Chapter 5: Functions and Graphs

5.3 Inverse Functions

Prepared by: Kang Kooi Wei

Learning Outcomes

- (a) Show whether a function has an inverse and find the inverse of the function
 - * Use algebraic or graphical approach.
 - * Emphasize that the inverse exists only for one-to-one and onto functions.
- (b) Compute the inverse of a function.

$$f \cdot g(x) = g \cdot f(x) = x$$
 . implies f inverse of g

- (c) Identify the domain and range of an inverse function.
- (d) Sketch the graph of the function f and its inverse f^{-1} on the same axes.

Inverse functions

The inverse of a function f exists if and only if f is a one-to-one function.

*Refer SDL 5.1 to determine one-to-one function using algebraic method or horizontal line test.

Domain and Range of Inverse Function

Domain of
$$f^{-1}$$
 = Range of f
Range of f^{-1} = Domain of f

$$f^{-1}[f(x)] = f[f^{-1}(x)] = x$$

Bloom: Remembering

Bloom: Understanding

Inverse Functions

Relationship between graphs of a function and its inverse

The graph of f^{-1} is obtained by reflecting the graph of f in the line y=x. The points (x,y) and (y,x) are at the same distances from the line y=x.

Bloom: Remembering Bloom: Understanding

Example

- 1. The function f is defined by $f: x \to 2x 1, x \in R$.
 - (a) Show that f is a one-to-one function.
 - (b) Find f^{-1} .
 - (c) Verify that $f(f^{-1}(x)) = x$.
- 2. Find the inverse for the function $f(x)=x^2+x-2, x\geq -\frac{1}{2}$ and state the domain and the range for the inverse function. Sketch the graph of y=f(x) and $y=f^{-1}(x)$ in the same diagram.

1. (a)
$$f(x_1) = f(x_2)$$

 $2x_1 - 1 = 2x_2 - 1$
 $x_1 = x_2$

Let $f(x_1) = f(x_2)$.

Hence f is one-to-one function.

(b)
$$f(x) = 2x - 1 = y$$
 Let $f(x) = y$.

Let
$$f(x) = y$$
.

$$\therefore x = \frac{y+1}{2}$$

Rearranging to let x in term of y.

$$\therefore f^{-1}(y) = x = \frac{y+1}{2}$$

$$\therefore x = \frac{y+1}{2}$$

$$\therefore f^{-1}(y) = x = \frac{y+1}{2}$$
Hence, $f^{-1}(x) = \frac{x+1}{2}$

1. (c)
$$f(f^{-1}(x)) = f\left(\frac{x+1}{2}\right)$$
$$= 2\left(\frac{x+1}{2}\right) - 1$$
$$= x$$

2.
$$f(x) = x^2 + x - 2, x \ge -\frac{1}{2}$$

 $f(x) = x^2 + x + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 2$

Completing the square.

Composite function definition.

$$= \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$$
 Minimum point $= \left(-\frac{1}{2}, -\frac{9}{4}\right)$.

2. Continue...

$$f\big(f^{-1}(x)\big)=x$$

$$\left(f^{-1}(x) + \frac{1}{2}\right)^2 - \frac{9}{4} = x$$

$$f^{-1}(x) = -\frac{1}{2} \pm \sqrt{x + \frac{9}{4}}$$

Since,
$$R_{f^{-1}} = D_f = \left[-\frac{1}{2}, \infty \right)$$

$$\therefore f^{-1}(x) = -\frac{1}{2} + \sqrt{x + \frac{9}{4}}$$

From minimum point,

Domain
$$f = \left[-\frac{1}{2}, \infty \right)$$

Range
$$f = \left[-\frac{9}{4}, \infty \right)$$

$$D_{f^{-1}} = R_f$$

$$R_{f^{-1}} = D_f$$

$$\therefore D_{f^{-1}} = \left[-\frac{9}{4}, \infty \right)$$

$$R_{f^{-1}} = \left[-\frac{1}{2}, \infty \right)$$

Bloom: Understanding

2. Continue...

Self-check

- 1. The function f is defined by $f: x \to x^3 1, x \in R$.
 - (a) Show that f is a one-to-one function.
 - (b) Find f^{-1} .
 - (c) Verify that $f(f^{-1}(x)) = x$.
- 2. Find the inverse for the function $f(x) = x^2 + 2x + 3$, $x \ge -1$ and state the domain and the range for the inverse function. Sketch the graph of y = f(x) and $y = f^{-1}(x)$ in the same diagram.

Bloom: Applying

Answer Self-check

1. (b)
$$f^{-1}(x) = (x+1)^{\frac{1}{3}}$$

2.
$$f^{-1}(x) = -1 + \sqrt{x - 2}$$

 $D_{f^{-1}} = [2, \infty)$
 $R_{f^{-1}} = [-1, \infty)$

Summary

The inverse of a function f exists if and only if f is a one-to-one function.

Key Terms

- Inverse Functions
- Domain
- Range
- Composite Functions
- Function