Chapter 3: Sequences and Series

3.2 Binomial Expansion

Prepared by: kwkang

Learning Outcomes

(a) Find the expansion of $(a+b)^{n}$ where \boldsymbol{n} is a positive integer.
(b) Write n ! notations and ${ }^{n} C_{r}=\binom{n}{r}$ as a binomial coefficient.
(c) Determine the general term in a binomial expansion $(\boldsymbol{a}+\boldsymbol{b})^{n}$ where \boldsymbol{n} is a positive integer.

Learning Outcomes

(d) Determine the expansion of $(1+x)^{n}$ for
$|x|<1$ where n is a rational number for both positive and negative numbers.

* $(a+b)^{n}=a^{n}\left(1+\frac{a}{b}\right)^{n}$ where $a>b$
* Use binomial expansion to approximate
values such as $\sqrt{2},(1.001)^{10}, \sqrt[3]{5}$.

Binomial Expansion

$$
\begin{aligned}
& n!=n(n-1)(n-2) \ldots 3 \times 2 \times 1 \\
& \binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

If \boldsymbol{n} is a positive integer, the general result for the expansion of $(a+b)^{n}$ is

Type 1

$$
\begin{aligned}
(a+b)^{n}= & \binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+ \\
& \cdots\binom{n}{r} a^{n-r} b^{r}+\cdots+\binom{n}{n} b^{n}
\end{aligned}
$$

Binomial Expansion

The general term, $\boldsymbol{T}_{\boldsymbol{r}+\mathbf{1}}={ }^{\boldsymbol{n}} \boldsymbol{C}_{\boldsymbol{r}} \boldsymbol{a}^{\boldsymbol{n - r}} \boldsymbol{b}^{\boldsymbol{r}}$
If n is negative or fractional, the binomial series for $(1+x)^{n}$ is given by

Type 2

$$
(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+\ldots
$$

$$
(a+b x)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}
$$

before applying the expansion of $(1+x)^{n}$ as shown above.

Example

1. Expand the following using the binomial theorem.
(a) $(x+y)^{3}$
(b) $(x-y)^{4}$
2. Find the $12^{\text {th }}$ term in the expansion of $(1+x)^{20}$ as a series in ascending powers of x.

Example

3. Find the coefficient of x^{6} in the expansion of $(3+x)^{12}$.
4. Find the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{12}$.

Solution

1. (a) $(x+y)^{3}=x^{3}+\binom{3}{1} x^{2}(y)+\binom{3}{2} x\left(y^{2}\right)+(y)^{3}$

$$
=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

(b) $(x-y)^{4}=x^{4}+\binom{4}{1} x^{3}(-y)+\binom{4}{2} x^{2}\left(-y^{2}\right)$

$$
+\binom{4}{3} x(-y)^{3}+(-y)^{4}
$$

$$
=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}
$$

kwkang@KMK
Bloom: Understanding

Solution (continue...)

2. $\boldsymbol{T}_{r+1}={ }^{\boldsymbol{n}} \boldsymbol{C}_{r} a^{\boldsymbol{n}-\boldsymbol{r}} \boldsymbol{b}^{\boldsymbol{r}} \quad$ Using T_{r+1} term formula

$$
\begin{aligned}
T_{12} & =\binom{20}{11}(1)^{20-11}(x)^{11} \\
& =167960 x^{11}
\end{aligned}
$$

3. $\quad T_{r+1}=\binom{12}{r}(3)^{12-r}(x)^{r} \quad$ Using T_{r+1} term formula

$$
\begin{aligned}
T_{7} & =\binom{12}{6}(3)^{12-6}(x)^{6} \quad \text { Obviously, } r=6 \\
& =673596 x^{6}
\end{aligned}
$$

The coeficient of x^{6} is $\mathbf{6 7 3 5 9 6}$.

Solution (continue...)

4. Independent of x means without x term. This is only make possible if the power of x is zero.

$$
T_{r+1}=\binom{12}{r}(x)^{12-r}\left(-\frac{1}{x}\right)^{r}
$$

Collect all terms in x and simplifying them if possible.

$$
\left.\begin{array}{l}
\frac{x^{12-r}}{x^{r}}=x^{12-2 r}=x^{0} \\
\therefore 12-2 r=0 \\
r=6
\end{array}\right\}
$$

Self-check

1. Expand the following using the binomial theorem.
(a) $(x+y)^{4}$
(b) $(1-x)^{4}$
2. Find the $10^{\text {th }}$ term in the expansion of $(1+2 x)^{18}$ as a series in ascending powers of x.

Self-check

3. Find the coefficient of x^{6} in the expansion of

$$
\left(2+\frac{x}{2}\right)^{10}
$$

4. Find the term independent of x in the expansion of $\left(x+\frac{1}{2 x^{2}}\right)^{12}$.

Answer Self-check

(1) (a) $x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
(b) $1-4 x+6 x^{2}-4 x^{3}+x^{4}$
(2) $T_{10}=24893440 x^{9}$
(3) 52.5
(4) $\frac{495}{16}$
kwkang@KMK

Example

1. Expand the following up to the term in x^{3}.
(a) $(1+x)^{\frac{1}{2}}$
(b) $\left(1-\frac{x}{2}\right)^{\frac{1}{4}}$
2. For which value of x are the expansions in Question 1 valid?

Example

3. Expand the function $(9+x)^{\frac{1}{2}}$ in a series of ascending powers of x as far as the term in x^{3}
. State the value of x for which each expansion is valid.
4. Obtain the expansion of $\sqrt{1-2 x}$ up to the x^{2} term. By putting $x=\frac{1}{100}$, find a rational approximation for $\sqrt{2}$.

Solution

1. (a)

$$
\begin{aligned}
(1+x)^{\frac{1}{2}}= & 1+\frac{1}{2} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} x^{2} \\
& +\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} x^{3}+\ldots \\
= & 1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\ldots
\end{aligned}
$$

Solution (Continue...)

1. (b) $\left(1-\frac{x}{2}\right)^{\frac{1}{4}}=1+\frac{1}{4}\left(-\frac{x}{2}\right)+\frac{\frac{1}{4}\left(\frac{1}{4}-1\right)}{2!}\left(-\frac{x}{2}\right)^{2}$

$$
\begin{aligned}
& +\frac{\frac{1}{4}\left(\frac{1}{4}-1\right)\left(\frac{1}{4}-2\right)}{3!}\left(-\frac{x}{2}\right)^{3}+\ldots \\
= & 1-\frac{1}{8} x-\frac{3}{128} x^{2}-\frac{7}{1024} x^{3}+\ldots
\end{aligned}
$$

Solution (Continue...)

2. (a) For expansion is valid,

$$
\begin{gathered}
|x|<1 \\
\therefore-1<x<1
\end{gathered}
$$

(b) For expansion is valid,

$$
\begin{array}{r}
\left|\frac{x}{2}\right|<1 \\
-1<\frac{x}{2}<1 \\
\therefore-2<x<2
\end{array}
$$

Solution (Continue...)

3. $(9+x)^{\frac{1}{2}}$

$$
\begin{aligned}
& =\left[9\left(1+\frac{x}{9}\right)\right]^{\frac{1}{2}} \\
& =3\left(1+\frac{x}{9}\right)^{\frac{1}{2}} \\
& =3\left[1+\frac{1}{2}\left(\frac{x}{9}\right)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}\left(\frac{x}{9}\right)^{2}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}\left(\frac{x}{9}\right)^{3}+\ldots\right] \\
& =3+\frac{x}{6}-\frac{1}{216} x^{2}+\frac{x^{3}}{3888}+\cdots
\end{aligned}
$$

kwkang@KMK
Bloom: Understanding

Solution (Continue...)

The expansion is valid for

$$
\begin{array}{r}
\left|\frac{x}{9}\right|<1 \\
-1<\frac{x}{9}<1 \\
\therefore-9<x<9
\end{array}
$$

Solution (Continue...)

4. $(1-2 x)^{\frac{1}{2}}$

$$
=1+\frac{1}{2}(-2 x)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}(-2 x)^{2}+\cdots
$$

$$
=1-x-\frac{1}{2} x^{2}+\ldots
$$

$$
\text { Put } x=\frac{1}{100} \text { into }(1-2 x)^{\frac{1}{2}}
$$

$$
\left(1-\frac{1}{100}\right)^{\frac{1}{2}}=1-\frac{1}{100}-\frac{1}{2}\left(\frac{1}{100}\right)^{2}
$$

kwkang@KMK
Bloom: Understanding

Solution (Continue...)

$$
\begin{aligned}
& \sqrt{\frac{98}{100}}=1-\frac{1}{100}-\frac{1}{20000} \\
& \frac{\sqrt{98}}{100}=\frac{20000-200-1}{20000} \\
& 7 \sqrt{2}=\frac{19799}{2000} \\
& \sqrt{2}=\frac{19799}{14000}
\end{aligned}
$$

kwkang@KMK

Self-check

1. Expand the following up to the term in x^{3}.
(a) $(1+x)^{\frac{1}{3}}$
(b) $\left(1-\frac{x}{3}\right)^{\frac{1}{5}}$
2. For which value of x are the expansions in Question 1 valid?

Self-check

3. Expand the function $(8+x)^{\frac{1}{3}}$ in a series of ascending powers of x as far as the term in x^{3} . State the value of x for which each expansion is valid.
4. Obtain the expansion of $\sqrt{1+x}$ up to the x^{2} term. By putting $x=\frac{8}{100}$, find a rational approximation for $\sqrt{3}$.

Answer Self-check

(1) (a) $1+\frac{1}{3} x-\frac{1}{9} x^{2}+\frac{5}{81} x^{3}$
(b) $1-\frac{1}{15} x-\frac{2}{225} x^{2}-\frac{2}{1125} x^{3}$
(2) (a) $-1<x<1$
(b) $-3<x<3$

Answer Self-check

(3) $2+\frac{x}{12}-\frac{1}{288} x^{2}+\frac{5}{20736} x^{3}+\ldots$

$$
-8<x<8
$$

(4) $\sqrt{3}=\frac{433}{250}$

BFF's Technique

Bracket

Fill in the blank

Find value

BFF's Technique

	n positive integer	n negative integer or fraction
Formula	$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}$	$1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots$
BFF's technique	$(2 x+5)^{2}$ - 3 terms if power to 2 - 4 terms if power to 3 and so on...	$\begin{gathered} (1+x)^{-2} \\ (a+b x)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n} \begin{array}{l} \text { Must in the form of }(1+x)^{n} \\ \text { before doing expansion. } \end{array} \end{gathered}$
Step 1: Bracket	()()()$+()()+()$	$1+\frac{()}{1!}()^{1}+\frac{()()}{2!}()^{2}+\frac{()()(~)}{3!}()^{3}+\cdots$
Step 2: Fill in the blank	$\binom{2}{0}(2 x)^{2}(5)^{0}+\binom{2}{1}(2 x)^{1}(5)^{1}+\binom{2}{2}(2 x)^{0}(5)^{2}$	$\begin{gathered} 1+\frac{(-2)}{1!}(x)^{1}+\frac{(-2)(-2-1)}{2!}(x)^{2}+ \\ \frac{(-2)(-2-1)(-2-2)}{3!}(x)^{3}+\cdots \end{gathered}$
Step 3: Find value	$4 x^{2}+20 x+25$	$1-2 x+3 x^{2}-4 x^{3}+\cdots$

Summary

Binomial expansion

Power, n is a positive integer

$$
\begin{aligned}
(a+b)^{n}= & \binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+ \\
& \binom{n}{3} a^{n-3} b^{3}+\ldots \\
& T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
\end{aligned}
$$

Power, \mathbf{n} is a negative integer or fraction

$$
\begin{gathered}
(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+ \\
\frac{n(n-1)(n-2) x^{3}}{3!}+\ldots \\
(a+b x)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}
\end{gathered}
$$

before applying the expansion of $(1+x)^{n}$ as shown above.
kwkang@KMK
Bloom: Remembering

Key Terms

- Binomial expansion
- Validity of expansion
- Term
- Coefficient
- General term
- Positive integer
- Fraction
- Rational number
kwkang@KMK

